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17 - Oscillations (A-level only) 
 
17.1 - Simple Harmonic Motion Oscillations 
Free oscillations occur when no external force is continuously acting on the 
system, so its energy remains constant. The system will oscillate at its 
natural frequency. 
Examples of systems which experience free oscillations are: 

● Simple pendulum - A small, dense bob that hangs from a string, 
which is attached to a fixed point. Once the bob is displaced and let 
go, the pendulum will oscillate freely.  

● Mass-spring system - A mass attached to a spring, which will 
oscillate freely once displaced and released. 

● Tuning fork - This will oscillate freely after being struck. 
 
An object is experiencing simple harmonic motion when its acceleration is directly proportional 
to displacement and is in the opposite direction. These conditions can be shown through the 
equation:  

xa =  − ω2   
Where a is acceleration, ω is angular speed, is displacement from the equilibrium position x  

 
An example of a simple harmonic oscillator is the simple 
pendulum, as shown in the diagram on the right.  
The pendulum oscillates around a central midpoint known as the 
equilibrium position. Marked on the diagram by an  is the x  
measure of displacement, and by an  is the amplitude of theA  
oscillations - this is the maximum displacement. You could also 
measure the time period (T) of the oscillations by measuring the 
time taken by the pendulum to move from the equilibrium 
position, to the maximum displacement to the left, then to the 
maximum displacement to the right and back to the equilibrium position. 
 
The frequency (f) is the number of full oscillations completed per unit time. You can calculate 
the frequency by finding the reciprocal of the time period (T) of an oscillation: 

 f = 1
T  

 
The angular frequency (ω) is the angle an object moves through per unit time (has only 
magnitude). You can calculate angular frequency by finding the product of frequency and 2π: 

πf  ω = 2  As  ω = T
2π  f = 1

T  

 
Phase difference is used to compare the stages that two oscillating objects are in. This is usually 
expressed as an angle (in degrees or radians) or as a fraction of a period. The degree by which 
objects are out of phase with each other is described by their phase difference: 
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● In phase - they’re oscillating at the exact same time (meaning they must also have the 
same frequency) and their phase difference will be a multiple of 360° (2π radians). 

● Completely out of phase - their oscillations are the exact opposites of each other and their 
phase difference will be an odd multiple of 180° (π radians). 

● 90°/ 1/4 of a cycle out of phase - this is where one object is oscillating a quarter of a cycle 
behind the other. 

 
The motion of a simple harmonic oscillator can observed by using a position sensor attached to 
a data logger. Using the data logger you can form a graph of displacement against time as shown 
below: 

 
The exact displacement-time graph for a simple harmonic oscillator is described using the following 
equation: 

x sin ωt  x =  0  
Where x is the displacement, x0 is the amplitude, ω is the angular frequency and t is the time. 

 
The above equation is known as a solution to the defining equation of simple harmonic motion (

).x  a =  − ω2  
 
As we know that velocity is the derivative of displacement, we can draw a velocity-time graph 
by drawing the gradient function of the above graph. 

 
 
 
 
 
 

The exact velocity-time graph for a simple harmonic oscillator is described using the following 
equation (which is the derivative of the displacement equation): 

 where v0 is equivalent to ωA/ωx0cosωt  v = v0  

 
Another equation which describes the velocity of a simple harmonic oscillator is: 

 v =  ± ω√(x )0
2 − x2

  

Note that the maximum and minimum velocity on the graph occurs when displacement is 0, as 
predicted in the above equation. 
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Finally, we know acceleration is the derivative of velocity, so we can draw an 
acceleration-time graph by drawing the gradient function of the above graph. 

 
 
By comparing the displacement-time and acceleration-time graphs, you can clearly see the 
defining characteristic of simple harmonic motion: acceleration is directly proportional and in the 
opposite direction to displacement. In simple harmonic motion, acceleration and displacement are 
completely (180°) out of phase with each other. 
 
Looking at the graphs of displacement and velocity against time - you can see that they are 90° 
out of phase.  
 
17.2 - Energy in Simple Harmonic Motion 
For any simple harmonic motion system, kinetic energy is transferred to potential energy and 
back as the system oscillates. The type of potential energy depends on the system. 
 
At the amplitude of its oscillations, the system will have the maximum amount of potential energy. 
As it moves towards the equilibrium position, this potential energy is converted to kinetic energy so 
that at the centre of its oscillations the kinetic energy is at a maximum. As the system then 
moves away from the equilibrium again, the kinetic energy is transferred to potential energy until it 
is at a maximum again and this process repeats for one full oscillation. The total energy of the 
system remains constant (when air resistance is negligible, otherwise energy is lost as heat).  

 
Image source: Saksun Young,CC BY-SA 4.0 

 
The total energy of a system undergoing simple harmonic motion is given by  

mω xE =  2
1 2

0
2  

This figure will be a constant and the sum of the kinetic and potential energies at any given point in 
the oscillation,  
 
The diagram below shows the variation of energy with displacement, while the diagram below 
shows the variation of energy with time, for a simple harmonic system staring at its amplitude. 

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

https://commons.wikimedia.org/wiki/File:Energy_in_SHM.gif
https://creativecommons.org/licenses/by-sa/4.0/


 
17.3 - Damped and forced oscillations, resonance 
Damping is where the energy in an oscillating is lost to the environment, leading to reduced 
amplitude of oscillations. There are 3 main types of damping: 

● Light damping - This is also known as under-damping and this is where the amplitude 
gradually decreases by a small amount each oscillation. 

● Critical damping - This reduces the amplitude to zero in the shortest possible time (without 
oscillating). 

● Heavy damping - This is also known as over-damping, and is where the amplitude reduces 
slower than with critical damping, but also without any additional oscillations. 
  

 
 
An example of a system experiencing light damping is a simple pendulum experiencing 
damping due to air resistance: after each oscillation the maximum amplitude of the pendulum 
decreases slightly. The amplitude of the oscillations follows an exponential decay. 
 
Critical damping is incredibly important when the amplitude must be reduced to zero in the fastest 
possible time, without oscillating. Shock absorbers are devices which allow the oscillations 
experienced by a car suspension to be critically damped, making controlling the car much easier. 
Measurement instruments such as speedometers are also critically damped so that their pointers 
do not oscillate, and move to the correct position quickly to avoid confusion. 
 
An example of a heavy damping device is a door closer, which allows a door to slowly close 
without oscillating. 
 
Forced vibrations are where a system experiences an external 
driving force which causes it to oscillate, the frequency of this 
driving force, known as driving frequency, is significant. If the 
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driving frequency is equal to the natural frequency of a system (also known as the resonant 
frequency), then resonance occurs. 
 
As the driving frequency approaches the resonant frequency, the amplitude of oscillations will 
increase, as shown in the graph to the right. 
 
Resonance is where the amplitude of oscillations of a system drastically increase due to gaining 
an increased amount of energy from the driving force.  
 
Resonance has many useful applications for example: 

● Instruments - An instrument such as a flute has a long tube in which air resonates, 
causing a stationary sound wave to be formed. 

● Radio - These are tuned so that their electric circuit resonates at the same frequency as 
the desired broadcast frequency. 

● Swing - If someone pushes you on a swing they are providing a driving frequency, which 
can cause resonance if it’s equal to the resonant frequency, causing you to swing higher. 

 
However, resonance also causes many undesirable effects in: 

● Bridges - People travelling across a bridge will provide a driving force which, when equal to 
the natural frequency, will cause large oscillations due to resonance. These oscillations are 
potentially dangerous and could lead to the damage of the bridge. 

● Aircraft - Parts of the aircraft may experience resonance, which causes large oscillations 
that can lead to those parts being damaged. 

 
Damping can be used to decrease the effect of resonance. Different types of damping will have 
different effects:  as the degree of damping increases, the resonant frequency decreases (shifts 
to left on a graph), the maximum amplitude decreases and the peak of maximum amplitude 
becomes wider. These effects are shown in the graph below, where ζ is the damping ratio, ζ = 1 
represents critical damping. 

 
Image source: Geek3,CC BY 3.0 
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You can see from the diagram above that the sharpness of the resonance decreases as the 
degree of damping increases. 
The sharpness of the resonance is a measure of how quickly the amplitude of the oscillations 
decays as you move either side of the peak.  
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